International Journal of Agricultural Sciences Volume 19 | Issue 1 | January, 2023 | 75-80

RESEARCH PAPER

Assessment of bioagents against cotton diseases under South Gujarat of India

Prashant B. Sandipan*, P. S. Patel **and** R. K. Patel¹ Main Cotton Research Station, Navsari Agricultural University, Surat (Gujarat) India (Email: prashantsandipan@gmail.com)

Abstract : Cotton (*Gossypium* spp.) is one of the most important economic products of the group of fibres due to volume and value of production. Its cultivation is also of great social importance, due to the number of jobs generated directly or indirectly. The fibre, the main product of cotton has many industrial applications. The manufacturing of yarn for weaving of various kinds of fabrics, cotton batting for hospital use, felt clothing, blankets and upholstery, photographic films and plates for radiography among others. Here in this experiment, different bioagents were evaluated against the cotton foliar disease. This experiment engage the total nine treatments including control from which, treatment T_5 (14.50 PDI) (Seed and soil application *Pf* CICR *i.e.*, seed application: 10^8 cfu/g @10g per kg of seed soil application: 2.5 kg/ha at 30 and 60 DAS) followed by T_8 (18.33 PDI) significantly recorded minimum bacterial leaf blight infection in comparison to the treatment T_9 *i.e.* control (42.33 PDI) in RCH 2 BG II hybrid. For Alternaria leaf spot disease, treatment T_8 (8.17 PDI) (Seed treatment with *Pseudomonas fluorescens* CICR (2 x 10^8 cfu/g) @ 10 g/kg seed + soil application of *Trichoderma viride* TNAU1 (2 x 10^6 cfu/g) @ 2.5 kg/ha in 250 kg of vermicompost and sprays of Kresoxim methyl (0.0443%) followed by Captan 70% + Hexaconazole 5% WP @ 1.5 g/l) were recorded significantly minimum Alternaria leaf spot disease in RCH 2 BG II hybrid as compared to the T_9 *i.e.* control (19.33 PDI) followed by T_7 (9.83 PDI) and T_3 (10.50 PDI) treatment. The highest seed cotton yield was recorded in the treatment T_5 (2606.00 kg/ha) followed by treatment T_8 (2335.33 kg/ha) and treatment T_7 (2275.67 kg/ha), respectively.

Key Words : Cotton, Gossypium spp, Treatment, Control, Bioagents

View Point Article : Sandipan, Prashant B., Patel, P.S. and Patel, R.K. (2023). Assessment of bioagents against cotton diseases under South Gujarat of India. *Internat. J. agric. Sci.*, **19** (1) : 75-80, **DOI:10.15740/HAS/IJAS/19.1/75-80**. Copyright@2023: Hind Agri-Horticultural Society.

Article History : Received : 24.06.2022; Revised : 14.10.2022; Accepted : 16.11.2022

INTRODUCTION

Cotton known as "The White Gold" or the "King of Fibres" enjoys a pre-eminent status among all cash crops in the country and is the principal raw material for flourishing textile industry. The most common cotton diseases reported in India are Wilt (*Fusarium oxysporum* f. sp. vasinfectum (G.F. Atk.) W.C. Snyder and H.N. Hansen), Root rots (*Rhizoctonia bataticola* (Taubenh.), Verticillium wilt (*Verticillium dahliae* Kleb.), Anthracnose (*Colletotrichum gossypii* Southworth. or *C. capsici* (Syd.) Butler and Bisby), Grey mildew (*Ramularia areola* G.F. Atk.), Blackarm (*Xanthomonas campestris* pv. *malvacearum* (Pammel) Dowson), Leaf blight (*Alternaria macrospora* Zimm), Leaf curl (Cotton leaf curl virus), Corynespora leaf blight (*Corynespora cassiicola* (Berk. and M. A. Curtis) C. T. Wei, Boll rot and physiological disorders as Para wilt, Leaf reddening and sometimes leaf elongation due to improper use of weedicides etc. The bacterial blight is the most wide spread and destructive disease reported to cause yield losses of about 10 to 30 per cent (Kalpana *et al.*, 2004 and Sandipan *et al.*, 2017a and 2017b).

Plant pathogens including fungi, bacteria, viruses and nematodes cause serious losses or damage to crops worldwide and significantly reduce the quality and quantity of agricultural commodities. These losses pose a major threat to global food production annually (El Ghaouth *et al.*, 2002; Dean *et al.*, 2012 and Singh, 2014; O'Brien, 2017). Moreover, pathogenic infection in the field or in post-harvest storage can affect the health of humans and livestock, especially if the pathogen produces toxins in or on consumable products (Brimner and Boland, 2003 and Menzler-Hokkanen, 2006).

According to Agrios (2005), the estimated 36.5% average of total losses includes 14.1 % caused by diseases (fungi, bacteria and viruses), 10.2% by insects and 12.2% by weeds. Largest crop loss (14.1 %) is by phytopathogens alone. Plant fungal diseases are the most destructive diseases where the fungal pathogens attack many economic crops causing yield losses, which affect directly many countries' economy.

Biological control is considered as a promising alternative to pesticide and plant resistance to manage plant diseases, but a better understanding of the interaction of its natural and societal functions is necessary. A reduction in chemical inputs in agriculture requires alternative methods for managing soil borne diseases for sustainable production systems. This includes the use of biological control agents (Roberts *et al.*, 2005, Spadaro and Gullino, 2005).

Biological control is a method of plant disease management by inhibiting plant pathogens, improving plant immunity and or modifying the environment through the effects of beneficial microorganisms, compounds or healthy cropping systems (Bragard *et al.*, 2013, Burketova *et al.*, 2015, Vandenberghe *et al.*, 2017 and Poveda *et al.*, 2020). Thus, in the present study the objective was formulated to investigate the effect of different bioagents against the major foliar diseases of cotton. Word cloud prepared from the introduction part :

MATERIAL AND METHODS

The experiment was laid by dibbling method with the following experimental details (Table A and B). All the recommended agronomic practices were followed for raising the good crop. In each net plot of each treatment randomly tag 5 plants and score 5 lower and 5 middle leaves of each plant in terms of 0-4 grade and work out PDI as mentioned below by using 0-4 scale as given by Sheoraj, 1988 and then these grades were converted into per cent disease incidence (PDI) by using the formula given by Wheeler, 1969 (Bacterial leaf blight and Alternaria leaf spot diseases).

Disease incidence (%) = $\frac{\text{No. of infected plants (Numerical grades)}}{\text{No. of leaves observed x Max. grade}}$

For, Bacterial leaf blight (BLB) disease					
Scale	PDI	Grade	Symptoms		
0	0.0	Immune	No infection		
1	1-	R	Few spots, scattered, 1mm in dia, no		
	25%		coalescing, reddish, no angular, veins		
			free, around 5% leaf area covered		
2	26-	MR	Spots initially wet but rapidly drying,		
	50%		several, larger 2 mm in dia, no		
			coalescing, reddish brown, veins and		
			veinlets free or with dry lesions, 10%		
			leaf area covered		
3	51-	MS	>2mm dia lesions, angular, turning		
	75%		brown and black, coalescing, spreading		
			linearly along the small viens, or water		
			soaked vien infection along the main		
			veins, 11-20% leaf area cover		
4	>75	S	Larger lesions, water soaked,		
	%		coalesing, or veins infected and		
			extended up to pulvinus and petioles,		
			larger lesions turning to brown black,		
			in severe cases branches and stem also		
			attacked and covering more than 20%		
			leaf area		

Assessment of bioagents against cotton diseases under South Gujarat of India

For, Alternaria leaf spot (ALS) disease					
Scale	PDI	Grade	Symptoms		
0	0.0	Immune	No infection		
1	1-	R	A few small spots, less than 2mm,		
	25%		scattered, which over less than 5% leaf		
			area		
2	26-	MR	Spots bigger in size up to 3mm and cover		
	50%		6-20% leaf area covered		
3	51-	MS	Spots increasing in size 3-5mm, irregular		
	75%		in shape, coalesing and 21-40% leaf area		
			cover		
4	>75%	S	Many spots coalesce to make bigger		
			lesion, irregular in shape and size and		
			covering more than 40% leaf area		

For foliar diseases, it is standard methodology of AICRP, Cotton.

RESULTS AND DISCUSSION

The results obtained from the present investigation as well as relevant discussion have been summarized under following heads :

The field experiment was conducted during *Kharif* 2021 at Main Cotton Research Station (MCRS), Surat (Gujarat). The results presented in the Table 1 and Fig. 1 revealed that the out of total nine treatments including control, treatment T_5 (14.50 PDI) followed by T_8 (18.83 PDI) recorded minimum Bacterial leaf blight infection in comparison to the treatment T_9 *i.e.* control (42.33 PDI) in RCH 2 BG II hybrid.

For Alternaria leaf spot disease, treatment $T_8(8.17 PDI)$ was recorded significantly minimum Alternaria leaf spot disease in RCH 2 BG II hybrid as compared to the T_9 *i.e.* control (19.33 PDI) followed by $T_7(9.83 PDI)$ and $T_3(10.50 PDI)$ treatment (Table 2 and Fig. 2).

The highest seed cotton yield was recorded in the treatment T_5 (2606.00 kg/ha) followed by treatment T_8 (2335.33 kg/ha) and treatment T_7 (2275.67 kg/ha), respectively (Table 3 and Fig. 2).

Comparison of the efficacy between the biocontrol

Table 1 : Experimental detail					
1.	Objective	:	To find out the effective module for the management of cotton		
			diseases		
2.	Location	:	Main Cotton Research Station, Surat		
3.	Year of commencement	:	2021		
4.	Experimental details				
5.	Design	:	RBD		
6.	Treatment	:	Eight (8) + 01 Control		
7.	Replication	:	Three (3)		
8.	Plot size in sq. meter	:	Gross: 6.0 x 4.5 Net: 3.6 x 3.6		
9.	Name of hybrid (Susceptible, if available)	:	Bt hybrid (RCH 2 BG II)		
10.	No. of rows/plot	:	5		
11.	No. of dibbles/row	:	10		
12.	Plot size in sq. Meter (1 plot)	:	27.0		
13.	Expt. area in ha.	:	1093.5 sq. meter (0.10 ha)		
14.	Spacing	:	120 x 45 cm		
15.	FYM t/ha	:	-		
16.	Fertilizer dose NPK kg/ha	:	240:40:00		
17.	Previous crop	:	-		
18.	Date of sowing	:	24.06.21		
19.	Date of germination	:	26.06.21		
20.	Date of gap filling	:	13.07.21 and 22.07.21		
21.	No. of plant protection	:	As per the treatments		
22.	No. of irrigation	:	As and when required		
23.	Date of harvesting	:	-		

Internat. J. agric. Sci. | Jan., 2023 | Vol. 19 | Issue 1 | 75-80 [177] Hind Agricultural Research and Training Institute

Fig. 1: Per cent disease intensity of bacterial leaf blight (BLB)

Fig. 2 : Per cent disease intensity of alternaria leaf spot (ALS)

Fig. 3: Seed cotton yield

agents used in different treatments at Surat centre indicated that treatment T_5 : Seed and soil application of *Pf* CICR (Seed application 10^8 cfu/g @ 10g per kg of seed and soil application 2.5 kg/ha at the time of sowing and also applied at 30 and 60 days was found effective in reducing the Bacterial leaf blight infection. And for Alternaria leaf spot disease, treatment T_8 : Seed treatment: Pf CICR (2 x 10⁸cfu/g) @ 10 g/kg seed Soil application: *T. viride* TNAU 2 x 10⁶ cfu/g) @ 2.5 kg/ha in 250 kg of vermicompost

Spray: Kresoxim methyl (0.0443%) followed by Captan 70% + Hexaconazole 5% WP @ 1.5 g/l was found effective in reducing the Alternaria leaf spot disease in RCH 2 BG II hybrid cotton.

Table 2 : Treatment detail							
Trt No.	Treatment details	Dose	Application Time	Observations to be taken			
T ₁	Seed and soil application of <i>Bacillus aryabhattai</i>	 Seed application: 10⁸ cfu/g @10g per kg of seed Soil application: 2.5 kg/ha (30 and 60 DAS) 	 At the time of sowing 30 and 60 DAS 	Per cent incidence for foliar diseases and seed cotton yield			
T ₂	Seed and soil application of <i>Bacillus tequeilencis</i>	 Seed application: 10⁸ cfu/g @10g per kg of seed Soil application: 2.5 kg/ba (30 and 60 DAS) 	 At the time of sowing 30 and 60 DAS 				
T ₃	$T_1 + T_2$	 Soli application: 2.5 kg/na (50 and 60 DAS) Seed application: 10⁸ cfu/g @10g per kg of seed 	 At the time of sowing Ac pass 				
T_4	Seed and soil application of Commercial product <i>Bacillus</i>	 Soil application: 2.5 kg/ha (30 and 60 DAS) Seed application: 10⁸ cfu/g @10g per kg of seed Soil application: 2.5 kg/ha (20 and (0 DAS)) 	 30 and 60 DAS At the time of sowing 20 and (0 DAS) 				
T ₅	Seed and soil application <i>Pf</i> CICR	 Soli application: 2.5 kg/ha (30 and 60 DAS) Seed application: 10⁸ cfu/g @10g per kg of seed Soil application: 2.5 kg/ha (30 and 60 DAS) 	 S0 and 60 DAS At the time of sowing 20 and 60 DAS 				
T_6	Chemical seed treatment (Vitavax power @ 0.2%)	 Son approaches 2.5 kg/na (50 and 60 DAS) 2 g/kg seed 	 At the time of sowing 				
T ₇	Foliar application of Pyroclostrobin @0.1%	• 1.0 g/lit of water	• 60 DAS				
T ₈	Seed treatment with <i>Pseudomonas</i> soil application of <i>Trichoderma vir</i> of vermicompost and sprays of Kre + Hexaconazole 5% WP @ 1.5 g/l	• Foliar spray at the time of disease initiation					
T9	Control (Untreated Control)						

Internat. J. agric. Sci. | Jan., 2023 | Vol. 19 | Issue 1 | 75-80 Hind Agricultural Research and Training Institute

Sr. No.	Treatments	Bacterial leaf blight (PDI)	Alternaria leaf spot (PDI)	Seed cotton yield (Kg/ha)	
T_1	Seed and soil application of Bacillus aryabhattai Seed application: 108 cfu/g				
	@10g per kg of seed at the time of sowing	26.17 (30.64)	13.33 (21.33)	1926.33	
	Soil application: 2.5 kg/ha (30 and 60 DAS) with FYM/compost				
T_2	Seed and soil application of Bacillus tequeilencis Seed application: 108cfu/g				
	@10g per kg of seed at the time of sowing	23.33 (28.81)	11.50 (19.76)	2105.00	
	Soil application: 2.5 kg/ha (30 and 60 DAS) with FYM/compost				
т	$T_1 \! + \! T_2$ Seed application: $10^8 \text{cfu/g} @ 10 \text{g}$ per kg of seed at the time of sowing	20.22 (26.50)	10.50 (19.90)	2159 22	
13	Soil application: 2.5 kg/ha (30 and 60 DAS) with FYM/compost	20.33 (20.36)	10.50 (18.80)	2158.55	
T_4	Seed and soil application of Commercial product Bacillus subtilis				
	Seed application: 10^8 cfu/g @10g per kg of seed at the time of sowing	29.67 (32.91)	14.17 (22.04)	1990.00	
	Soil application: 2.5 kg/ha (30 and 60 DAS) with FYM/compost				
T ₅	Seed and soil application Pf CICR				
	Seed application: 10^8 cfu/g @10g per kg of seed at the time of sowing	14.50 (22.09)	15.83 (23.37)	2606.00	
	Soil application: 2.5 kg/ha (30 and 60 DAS) with FYM/compost				
T_6	Chemical seed treatment (Vitavax power $\textcircled{0}$ 0.2%) 2 g/kg seed at the time of		16 22 (22 77)	1929 22	
	sowing	30.67 (33.53)	10.33 (23.77)	1838.33	
T_7	Foliar application of Pyraclostrobin $@ 0.1\%$ gm/lit of water	33.18 (35.10)	9.83 (18.17)	2275.67	
	Seed treatment: Pf CICR (2 x 10^8 cfu/g) @ 10 g/kg seed				
	Soil application: <i>T. viride</i> TNAU 2 x 10^6 cfu/g) @ 2.5 kg/ha in 250 kg of				
T_8	vermicompost	18.83 (25.66)	8.17 (16.48)	2335.33	
	Spray: Kresoxim methyl (0.0443%) followed by Captan 70% + Hexaconazole				
	5% WP @ 1.5 g/l				
T9	Control	42.33 (40.54)	19.33 (26.03)	1763.33	
$S.E.\pm(T)$		1.71	1.32	147.42	
C.D. (P=	0.05) (T)	5.12	3.95	441.97	
C.D. (Y x T)		-	-	-	
C.V. %		9.67	10.83	12.09	

Table 3: Statement showing the per cent disease	intensity of	bacterial leaf blight	(BLB),	Alternaria	leaf spot	(ALS)	and seed	cotton	yield i	in
efficacy of bioagents against cotton diseas	es 2021-22									

*Figure in the parenthesis are retransformed values

Acknowledgement :

Author is extremely thankful to the Main Cotton Research Station (MCRS), Surat (Gujarat) and AICRP on Cotton for providing the requisite facility and other necessary arrangements for facilitating the experiment in an efficient way.

REFERENCES

Agrios, G. N. (2005). *Plant pathology*. 5th Ed. Elsevier Academic Press, San Diego, California pp.3-15.

Bragard, C., Caciagli, P., Lemaire O., Lopez-Moya, J.J., MacFarlane, S., Peters, D., Susi, P. and Torrance, L. (2013). Status and prospects of plant virus control through interference with vector transmission. *Annu. Rev. Phytopathol.*, **51**:177–201.

Brimner, T. A., Boland, G. J. (2003). A review of the nontarget effects of fungi used to biologically control plant diseases. *Agric. Ecosyst. Environ.*, **100** (1) : 3–16.

Burketova L., Trda L., Ott, P. G. and Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. *Biotechnol.*, **33**: 994–1004.

Davide, Spadaro and Maria Lodovica, Gullino (2005). Improving the efficacy of biocontrol agents against soilborne pathogens. *Crop Prot.*, **24**: 601-6013. Prashant B. Sandipan, P. S. Patel and R. K. Patel

Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A. and Spanu, P. D. (2012). The top 10 fungal pathogens in molecular plant pathology. *Mol. Plant Pathol.*, 13 (4): 414–430.

De Souza, Vandenberghe L. P., Garcia L. M. B., Rodrigues, C., Camara, M. C., de Melo Pereira, G. V., de Oliveira, J. and Soccol, C.R. (2017). Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS *Microbiol.*, **3**:629–648.

El Ghaouth, A., Wilson, C., Wisniewski, M., Droby, S., Smilanick, J. L. and Korsten, L. (2002). Biological control of

postharvest diseases of fruits and vegetables. *Applied* mycology and biotechnology, **2**: 219–238.

Menzler-Hokkanen, I. (2006). Socio-economic significance of biological control, In : *An ecological and societal approach to biological control* (Dordrecht: Springer;), pp.13–25.

O'Brien, P. A. (2017). Biological control of plant diseases. *Australas. Plant Pathol.*, **46** (4) : 293–304.

Poveda, J., Abril-Urias, P. and Escobar, C. (2020). Biological

control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. *Microbiol.*, **11**: 992.

Sandipan Prashant, B., G.R. Bhanderi, R.D. Patel and Solanki, B.G. (2017). Survey and status of different diseases of cotton under South Gujarat region, India. *Int. J. Curr. Microbiol. App. Sci.*, 6(9): 1362-1367.

Sandipan, P. B., Bhanderi, G. R., Patel, R. D., Patel, D. M. and Solanki, B. G. (2017). Screening of varieties/breeding materials for resistance to different diseases in natural condition under South Gujarat region, India. *Int. J. Curr. Microbiol. App. Sci.*, 6(9): 1355-1361.

Sheo Raj and Verma, J.P. (1988). Diseases of cotton in India and their management. *Review of Tropical Plant Pathology*, **5**:207–254.

Singh, H.B. (2014). Management of plant pathogens with microorganisms. *Proc. Indian Natl. Sci. Acad.*, **80** (2) : 443–454.

Wheeler, B. E. J. (1969). *An Introduction to Plant Disease*. John Willey and Sons, London, pages: 374.

